Two-dimensional 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex and a quinoxaline ((MeCys3, MeCys7)(TANDEM) drug duplex complex.
نویسندگان
چکیده
Assignment of the 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex, d(CCCGATCGGG), and its quinoxaline ((MeCys3, MeCys7]TANDEM) drug duplex complex has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The 31P chemical shifts of this 10 base pair oligonucleotide follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. While the 31P chemical shifts show sequence-specific variations, they also do not generally follow the Calladine "rules" previously demonstrated. 31P NMR also provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the drug to the duplex. Although the quinoxaline drug, [MeCys3, MeCys7]TANDEM, is generally expected to bind to duplex DNA by bis-intercalation, only small 31P chemical shift changes are observed upon binding the drug to duplex d(CCCGATCGGG). Additionally, only small perturbations in the 1H NMR and UV spectra are observed upon binding the drug to the decamer, although association of the drug stabilizes the duplex form relative to the other states. These results are consistent with a non-intercalative mode of association of the drug. Modeling and molecular mechanics energy minimization demonstrate that a novel structure in which the two quinoxaline rings of the drug binds in the minor groove of the duplex is possible.
منابع مشابه
Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure.
Assignment of the 1H and 31P resonances of a decamer DNA duplex, d(CGCTTAAGCG)2 was determined by two-dimensional COSY, NOESY and 1H-31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. The solution structure of the decamer was calculated by an iterative hybrid relaxation matrix method combined with NOESY-distance restrained molecular dynamics. The distances fro...
متن کاملNuclear magnetic resonance and circular dichroism studies of a duplex--single-stranded hairpin loop equilibrium for the oligodeoxyribonucleotide sequence d(CGCGATTCGCG).
Nuclear magnetic resonance (NMR) and circular dichroism (CD) studies have been carried out with the oligodeoxyribonucleotide mismatch sequence, d(CGCGATTCGCG), 1. It has been found that 1 exists, in solution, as an equilibrium mixture of slowly interconverting, structured conformational isomers, 1a and 1b. On the basis of the concentration dependence of the 1a-1b equilibrium, the 1H NMR spectru...
متن کاملNMR Spectra and Restrained Molecular Dynamics Structure of an Oligodeoxyribonucleotide Duplex Refined via a Hybrid Relaxation Matrix Procedure
Assignment of the H and P resonances of a decamer DNA duplex, d(CGCTIAAGCG) 2 was determined by two-dimensional COSY, NOESY and H-P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. The solution structure of the decamer was calculated by an iterative hybrid relaxation matrix method combined with NOESY-distance restrained molecular dynamics. The distances from the...
متن کاملCharacterization of conformational features of DNA heteroduplexes containing aldehydic abasic sites.
The DNA duplexes shown below, with D indicating deoxyribose aldehyde absic sites and numbering from 5' to 3', have been investigated by NMR. The 31P and 31P-1H correlation data indicate [formula: see text] that the backbones of these duplex DNAs are regular. One- and two-dimensional 1H NMR data indicate that the duplexes are right-handed and B-form. Conformational changes due to the presence of...
متن کاملThe solution structure of DNA decamer duplex containing the Dewar product of thymidylyl(3-->5')thymidine by NMR and full relaxation matrix refinement.
The (6-4) adducts and their Dewar isomers play an important role in cytotoxicity and mutation in skin cells exposed to sunlight. Structural study of the DNA duplex containing a site-specific photoproduct is an essential step toward understanding the molecular mechanism of the mutagenesis and the repair activity of UV-irradiated DNA. Here we use 1H NMR spectroscopy and full relaxation matrix ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomolecular structure & dynamics
دوره 7 3 شماره
صفحات -
تاریخ انتشار 1989